
A DarkBasic DataBase
By: Phaelax(Phaelax@hotmail.com)

So you want to create a database program in DarkBasic. It’s easier than you may
think. Nothing more to say in this introduction, so let’s get started.

By the end of this tutorial, your database will be able to create, read, and save
entries. It will teach you how to use arrays and write to external files, thus creating your
own file format.

So what is an array?
An array is an easy to use way of storing related data together. Here’s an easy

way to show you what that means. Suppose you have the names of 10 people stored into
10 different string variables. To output those names to the screen would look something
like this:

Print Name1$
Print Name2$
Print Name3$
Print Name4$
Print Name5$
Print Name6$
Print Name7$
Print Name8$
Print Name9$
Print Name10$

Now what if you had to display 100 names? That’s a lot of very repetitive code to write.
Let’s turn the above statements into something more simple by using an array.

For i = 1 to 10
Print name$(i)

Next i

Those 3 lines of code will do the same as the 10 lines of code above. Now again imagine
writing the output for 100 names using the first method. That’s 100 lines of code. If you
use an array like above, all you have to do to output those 100 names is change that
number 10 to a 100. Couldn’t be any easier. Now to explain how the above code works.
To use an array, you must define it first by using the dim command.

Dim variableName(amount)
This will make an array with the specified name and desired amount. The amount is how
many elements the array can hold. So to store 10 names, the array would have to have a
size of at least 10. Think of these boxes as our array with a size of 10. Each box is an
element or in other words, a variable. Each box can hold a name.

Name1 Name2 Name3 Name4 Name5 Name6 Name7 Name8 Name9 Name10

To access each element, you have the array variable’s name followed by an index number
in parenthesis.

Name$(4)
The index points to which box you want to access. So the above code statement would
return whatever Name4 is.

So for what reason do we need to know about arrays to create a database? I’ll get to that
farther down. An array can hold an type of data that you want. Integers, floats, strings,
etc… But the entire array can only hold 1 type of data, meaning you could not make an
array that stored integers in some elements and strings in another. For this reason, we’ll
need to create our own data type and define the array as that type of data.

What is a Type?
In Dark Basic Pro, you can create your own data structures.
Type person

Name as string
Age as integer

Endtype

The above code makes a new data type called person. Think of this person as like
saying integer or string. The name and age variables you see defined inside the TYPE
structure are like sub variables to the person. So to define a variable of type person
would look like the following.

Me as person

Now this is how you would write data to the new variable. Because Me now has 2 sub
variables as part of its data type, you can’t simply say Me = “Phaelax”.

Me.name = “Phaelax”
Me.age = 21

Seems simple enough, right? We can define an array as a person type as well, and use it
in the same way, while following the syntactic rules of an array of course.

Dim people(10) as person

People(1).name = “Phaelax”
People(1).age = 21
People(2).name = “Duosoft”
People(2).age = 18

Once you have all the data written into the new array, this is how you would recall the
data.

For i = 1 to 10
Print people(i).name
Print people(i).age

Next i

Wow, this is easy isn’t it. Now for the database, you need to think of what type of data
you’re going to be using and saving. For this example, let’s create a database of friends’
addresses. First, you create your new data type that will have a variable to define all parts
of the data you need to store such a record.

Type friend
Name as string
Phone as string
Address as string
City as string
State as string
Zip as string

Endtype

These can all be strings if you want. Now you create your array of friends. Create the
array with a big enough size that you’re sure you won’t reach. I have well under 100
friends I need to keep track of, so a size of 100 is more than plenty.

Dim addressBook(100) as friend

How to create and access external files?
Now to fill our address book with data. Oh wait, we need a way to easily access

these variables from within a program. Let’s create something very simple to allow users
to enter data into our address book. This should program will prompt the user to either
add a new entry into the address book, or quit.

Type friend
 Name as string
 Phone as string
 Address as string
 City as string
 State as string
 Zip as string

Endtype

Dim addressBook(100) as friend

rem number of current entrys
index = 0

do
 cls

 input "Would you like to add a new entry? y/n", a$

 if a$ = "y"
 inc index, 1
 input "Enter the name: ", addressBook(index).name
 input "Enter the phone number: ", addressBook(index).phone
 input "Enter the address: ", addressBook(index).address

 input "Enter the city: ", addressBook(index).city
 input "Enter the state: ", addressBook(index).state
 input "Enter the zip code: ", addressBook(index).zip
 endif

 if a$ = "n"
 rem quit program
 end
 endif

loop

There’s only one small problem with this code. Every time you run the program, you’ll
have to re-enter the data. Kind of defeats the whole purpose of an address book. So now
we need a way to save the data to be recalled later on. The following code will write all
inputted address entries into a text file.

filename$ = "testing.book"

if file exist(filename$)=1 then delete file filename$

open to write 1, filename$

write word index

for i = 1 to index
 write string 1, addressBook(i).name
 write string 1, addressBook(i).phone
 write string 1, addressBook(i).address
 write string 1, addressBook(i).city
 write string 1, addressBook(i).state
 write string 1, addressBook(i).zip

next i

close file 1

First, we check to see if the file of the specified already exists or not. If it does, then we
delete the file, otherwise the open to write command will fail. Next, we create the text
file used to store our data. To make things easier, the first bit of data we store is the
number of entries that were created. This makes it easier when we go to retrieve that data
later. Now we go into a simple FOR loop and write each address out to the file in order.
After we’re done writing our data out to the file, we close the file. The next time the user
goes to run the database, we need to load up the old data back into the array.

if file exist(filename$)=1

open to read 1, filename$

read word 1, index

for i = 1 to index

read string 1, addressBook(i).name
read string 1, addressBook(i).phone
read string 1, addressBook(i).address
read string 1, addressBook(i).city
read string 1, addressBook(i).state
read string 1, addressBook(i).zip

next i

close file 1

endif

First, we check to see if the file exists, otherwise there would be nothing to open, causing
an I/O Exception error. Then we read in the number of entries into our appropriate
variable. Then comes the FOR loop to load the rest of the data into the correct fields.

The next steps in creating a database are up to you. You could create a simple menu,
giving the user simple options to choose from.

Print “---Main Menu---”
Print “1. Load address book”
Print “2. Save address book”
Print “3. Add new entry”
Print “4. View entry”
Print “5. Quit”
input “Select an option by number”, option$

Then perform the appropriate action based on the user’s response. Look for future
installments of this tutorial. Future updates will include searching entries, sorting entries,
deleting entries, and the use of array lists instead of a normal array.

