Minesweeper
Author: Phaelax (phaelax@hotmail.com)

Introduction

The goal of this tutorial is to teach you the logic of the classic Minesweeper game and mimic its game play.  Ideally, anyone can follow this tutorial, but basic understanding of DarkBasic Professional would be beneficial.  At the very least you should already be familiar with using arrays and user-defined types(UDT).

Background

The basic goal of Minesweeper is to clear all the blocks which do not contain bombs.  Given a 10x10 grid (or any size), the user would click on a box which would then reveal one of three possible outcomes: a bomb, a number, an empty/blank space.

If you discover a bomb, it’s game over.  If you see a number, the number shown indicates how many bombs are touching the current grid space, or square.  All squares surrounding the selected square(adjacent and diagonal) are checked for bombs, giving a maximum number of 8 bombs.  Should you happen to uncover a blank space, all touching blank spaces are revealed to the user.  The affect spreads across all blank squares until no more blanks are within reach.  Another way to help visualize this is imagine the top row of the grid entirely blank.  If the user clicks the middle square in the top row, it’ll check the squares to its left and right.  If each square is blank, it will branch out in all directions from those squares checking any previously unchecked squares.  The outcome of that single click will result in the entire top row being revealed.
When the total number of unrevealed boxes is equal to the number of bombs in the map, the user has won the game.  If you’re sure a square contains a bomb, you can right-click on the square to flag, or mark, it. Right-clicking a second time will display a question mark over the square, meaning you are unsure if you should reveal it or not. Flagged squares are ok, but the game will not end if you have any question marks. Right-clicking a 3rd time will clear the square back to its original state or you can left-click it to reveal it.  One last thing, there is typically a time counter which is used for score ranking. Obviously, a shorter time is better.  Alright, let’s get started.

Building the Map
First thing to do is to define a map.  We will do this by building a UDT and creating a 2-dimensional array.

	Type Square


bombCount as integer

flag as integer

Endtype


Each square must retain two pieces of information, how many bombs are touching it and if a user has flagged this square as a bomb or is uncertain.  Default value will be 0, which will show no markings on the squares.  A value of 1 means it’s flagged as a bomb, 2 is uncertain, and 3 indicates the square has been cleared/revealed.  From now on, any squares which a user has clicked on I will refer to them as closed squares and open for any clickable square not yet revealed.
Next, we define the map and fill it with bombs.

	MapBombCount = 10

MapSizeX = 10

MapSizeY = 10

Dim map(MapSizeX, MapSizeY) as Square

createMap(MapSizeX, MapSizeY, MapBombCount)

Function createMap(width, height, bombs)


For i = 1 to bombs



repeat



x = rnd(width-1)+1




y = rnd(height-1)+1



until map(x,y).bombCount = 0


map(x,y).bombCount = -1


Next i

Endfunction


Now, an explanation of the above function and variables should they not be self-explanatory.  MapBombCount is how many bombs you want to appear on the map.  MapSizeX and MapSizeY are the number of squares across and down, respectively, you want your map to be in terms of overall size.  Define map as an array of Square elements.  The function is what fills our map full of bombs.  Be sure to never supply a width and height outside of the map’s dimensions or you will get an error.  If you wanted, you could forget about the function parameters and instead just create global variables from the three defined above.  To fill the map of all the bombs, all we need to do is loop through the number of bombs to add; in this case it’s 10 as defined above.   The reason for the repeat:until loop is to make sure all 10 bombs are placed in the map.  Without the loop, a random position in the map (as defined by X and Y) could be repeated and a bomb would be placed where a bomb has already been set.  This might seem an inefficient way, but considering a map of 100 squares (10x10) only needs filled with 10 bombs, it’s not likely to repeat very many times if at all.  But if you did have 10x10 map and wanted 99 bombs, you might run into some problems.
The createMap() function isn’t finished yet, we still need to determine which squares are touching bombs.  This is a simple matter of looping through all 100 squares and counting any of the 8 adjacent squares which have a bombCount value of -1.  The code below should go in the createMap() function, just after the line Next i.
	For y = 1 to height


For x = 1 to width



if map(x,y).bombCount <> -1




bombs = 0




inc bombs, bombExists(x-1,y-1,width,height)




inc bombs, bombExists(x,y-1,width,height)




inc bombs, bombExists(x+1,y-1,width,height)




inc bombs, bombExists(x-1,y,width,height)




inc bombs, bombExists(x+1,y,width,height)




inc bombs, bombExists(x-1,y+1,width,height)




inc bombs, bombExists(x,y+1,width,height)




inc bombs, bombExists(x+1,y+1,width,height)




map(x,y).bombCount = bombs



endif


Next x

Next y


What we’ve done here is check the 8 squares surrounding the current square in the nested FOR loop.  The first IF statement is to make sure we only total up the bombs on empty squares and don’t try to count how many bombs are touching a bomb instead.  The called function, bombExists(), is a sort of safety function  It’ll return a 1 if a bomb exists at that square, 0 if not.If the current square is along the edges of the map, there can’t be 8 adjacent squares and we don’t want an “array access out of bounds” error.  This function will also check the coordinates passed to it to make sure they’re within range of the array before proceeding.  If there is a bomb, we add 1 to the bombs variable then assign that total to the array element.  Below is the code of the bombExists() function.
	 function bombExists(x,y,width,height)

   if x < 1 or y < 1 or x > width or y > height then exitfunction 0

   if map(x,y).bombCount = -1 then exitfunction 1

endfunction 0


As you can see, it’s nothing special.  Check that x and y are within the bounds of the array given those bounds as parameters passed in the function, then check if a bomb exists at this square.

Drawing the Map

Now, the fun part, drawing the map.  We’ll need to define a few more variables, the size of each square and the map’s position.

	tileSize = 32

positionX = 20

positionY = 20

_drawMap:
  For y = 1 to MapSizeY
    For x = 1 to MapSizeX

 sx = positionX + (x-1)*tileSize


 sy = positionY + (y-1)*tileSize


 If map(x,y).flag = 0 then ink rgb(128,128,128),0


 If map(x,y).flag = 1 then ink rgb(255,0,0),0


 If map(x,y).flag = 2 then ink rgb(0,0,255),0


 If map(x,y).flag = 3 then ink rgb(192,192,192),0


 Box sx, sy, sx+tileSize, sy+tileSize


 Ink 0,0


 If map(x,y).flag=3 then text sx,sy,str$(map(x,y).bombCount)

    Next x

  Next y

  width = mapSizeX*tileSize

  height = mapSizeY*tileSize

  ink rgb(0,255,0),0
  For x = 0 to MapSizeX

     sx = positionX + x*tileSize

     Line sx, positionY, sx, positionY + height

  Next x

  For y = 0 to MapSizeY

     sy = positionY + y*tileSize

     line positionX, sy, positionX + width, sy

  Next y

RETURN


We’ve now defined the size of the squares (32x32), and the position to draw the map at.  The sub-routine, _drawMap, first draws all the squares in the map. SX and SY are the upper-left coordinates of the square being drawn.  positionX and positionY are the map’s starting coordinates, this can be used to center the map on the screen.  The series of IF statements are used to determine which type of square to draw.  Remember what each flag value means.  In this case, 0(an unchecked square) will be drawn as a grey square. Squares marked as potential bombs(1) are draw in red. Uncertain squares(2) are drawn in blue.  And a value of 3 means the square is closed(visible), so we’ll draw it in a lighter grey.  The last IF statement checks if the contents of the square should be revealed. If so, it will display the number of bombs.  If we see a -1 one on the screen, that’ll mean game over as that’s a bomb. 
The last two FOR statements are used to draw a grid over the blocks to make it easier to determine where a square begins and ends.
You can also define a variable called score and keep track of the time it takes to complete the game, displaying the time from the _drawMap sub-routine.

User-Interface

Time to design the UI, or user interface, for how the user will interact with the game. Best way to handle user input is to just create a sub-routine and call it from within the main loop (which you’ll be shown shortly).
	_controlUI:


If mouseclick() = 1 and flag = 0



Flag = 1



Mx = (mousex()-positionX)/tileSize + 1



My = (mousey()-positionY)/tileSize + 1



V = closeSquare(mx, my, MapSizeX, MapSizeY)



If v = -1 then death = 1



Gosub _checkWin


Endif


If mouseclick() = 2 and flag = 0



Flag = 1



Mx = (mousex()-positionX)/tileSize + 1



My = (mousey()-positionY)/tileSize + 1



If map(mx,my).flag <> 3




Map(mx,my).flag = map(mx,my).flag + 1




If map(mx,my).flag > 2 then map(mx,my).flag = 0



Endif


Gosub _checkWin

Endif


If mouseclick() = 0 then flag = 0

RETURN


If the user clicks with the left mouse button (button 1) and flag equals 0, then switch flag to equal 1. The reason for this flag is to make sure holding the mouse button down doesn’t register as more than a single click. Once the mouse button is released, the flag is reset back to 0 and the user can then make a new click.  After setting the mouse flag, the first step to do is to determine the position of the mouse cursor on the map grid.  Take the mouse coordinates, subtract the map’s offset position, then divide by the map’s tile size.  This will give us the grid coordinates to use with the map array.  We have to add 1 to both variables because otherwise we’d have a range of 0 to 9, but we need 1 to 10.  Next, we call the closeSquare() function and store its returned value.  The returned value is the bomb count for that square.  The function essentially flags that square as being closed (or clicked on) and also handles closing all adjacent empty squares should the clicked square be empty itself.  More on that function later in this tutorial.  If the returned value is -1 (a bomb), then flag the death variable.  The main loop will then begin to call the endGame() function on its next loop. That function looks as follows:
	Function endgame(message$)

Ink rgb(255,0,0),0


Center text screen width()/2, 50, message$

Center text screen width()/2, 70, “Press F1 for a new game”

If scancode() = 59 then gosub _newGame
endfunction
_newGame:

death = 0

win = 0

For y = 1 to MapSizeY



For x = 1 to MapSizeX




map(x,y).bombCount = 0




map(x,y).flag = 0



next x


next y


createMap(MapSizeX, MapSizeY, MapBombCount)
RETURN


All the function does is display message$ and the instructions for starting a new game, in this case by pressing F1.  The scan code value for the F1 key is 59.  When the user presses F1, it will call the _newGame sub routine.  This routine basically resets all the variables and creates a new map.  The endgame() function will also be used when the user wins the game, which that criteria will be shown at the end of the next section.
Now back up to the _controlUI routine.  The second IF statement is when the user clicks the right mouse button (button 2).  This is what triggers the different states of the square, such as flagging it as a bomb.  First, get the map coordinates then check to make sure this square isn’t already closed.  If not, then we increment the flag value to step through the different states of the square.  The user can only step through 0 to 2. So if the flag value becomes greater than 2, reset back to 0, an unmarked square.

On to the closeSquare() function mentioned earlier.  The purpose of this function is to first, make sure the map coordinates passed to it are within the bounds of the array. Next, make sure this square isn’t already closed, if it is then we should exit the function with -2.  It really doesn’t matter which value is return, so long as it’s not -1, which represents a bomb and is the only value we’re concerned about receiving. Next, if the function hasn’t exited yet, we set the specified square’s flag to 3, marking it as closed.  Now the important step, check to see if this square is empty (not touching any bombs).  If it has a bomb count of 0, then we need to check all adjacent squares for other empty squares and continue doing so until we reach a square that isn’t a bomb but isn’t empty. We do this simply by calling the closeSquare() function 8 more times within itself.  When a function calls itself, it is known as recursion. Here is the code below:
	function closeSquare(x, y, width, height)

  if x < 1 or y < 1 or x > width or y > height then exitfunction -2

  if map(x,y).flag = 3 then exitfunction -2

    c = map(x,y).bombCount

    map(x,y).flag = 3

    rem if empty square, check for adjacent empty squares

    if c = 0

    if closeSquare(x-1,y-1,width,height) = 0 then map(x-1,y-1).flag = 3

    if closeSquare(x,y-1,width,height) = 0 then map(x,y-1).flag = 3

    if closeSquare(x+1,y-1,width,height) = 0 then map(x+1,y-1).flag = 3

    if closeSquare(x-1,y,width,height) = 0 then map(x-1,y).flag = 3

    if closeSquare(x+1,y,width,height) = 0 then map(x+1,y).flag = 3

    if closeSquare(x-1,y+1,width,height) = 0 then map(x-1,y+1).flag = 3

    if closeSquare(x,y+1,width,height) = 0 then map(x,y+1).flag = 3

    if closeSquare(x+1,y+1,width,height) = 0 then map(x+1,y+1).flag = 3

  endif

endfunction c




Putting it all together

Now that you have all the functionality necessary, its time to build the main loop which will allow all your hard work to come together.  Because the core of the game has been written in functions and sub-routines, the main loop is only a few lines long.  If you design all your games in this manner, it will be much easier to look at the flow of your program, thus making debugging and continued work easier.
	Sync on

DO


cls


Gosub _drawMap


If death = 1



endgame(“GAME OVER”)

Else


If win = 1




endgame(“You Win!”)



else




Gosub _controlUI



Endif


Endif


Sync

LOOP


First things first, turn on the vertical sync then create your DO:LOOP.  Make a call to clear screen (cls) then call your _drawMap routine.  If death equals 1 or win equals 1,  show the _endGame routine, otherwise, allow user to interact with the game controls in the _controlUI routine.  And finally, make a call to sync so everything gets drawn to the screen.
So how does a user win?  Remember above in the _controlUI routine that whenever a user left-clicks, it calls the _checkWin routine.  When the user wins, the only squares left still open should be equal to the number of bombs the map had, and those open squares cannot be marked as uncertain but may be flagged as a bomb by the user. 
	_checkWin:

openSquares = 0


uncertainSquares = 0

For y = 1 to MapSizeY



For x = 1 to MapSizeX




If map(x,y).flag <> 3 then Inc openSquares, 1




If map(x,y).flag = 2 then Inc uncertainSquares, 1


Next x


Next y


If openSquares=MapBombCount and uncertainSquares=0 then win = 1

RETURN


Final Thoughts
And that’s all there is to it really.  Define the variables, array, and UDT at the top of your program, write your main game loop, then after that outside of the loop write out your sub-routines followed by any functions.  

Add some fancy graphics if you want and maybe a timer so you can keep track of players with a high score table, maybe even a few sound effects.  The logic of the game as you’ve seen is fairly simple, but the game is not always simple to play.  With a 10x10 map with only 10 bombs, you’ll rarely see squares with a number higher than 3. But once you get larger maps of 3-4 times larger and throw in a hundred bombs or so, squares showing 8 won’t be uncommon. And there’s nothing to say the squares beyond that circle of bombs is empty either.  Have fun coders!

